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1. INTRODUCTION

Many time series encountered in engineering applications are
strongly perfodic -- for example, outdoor temperature, electrical con-
sumption, the roughness of machined surfaces, and wachine tool chatter
vibration. This periodic behavior is caused by the dynamics of the
underlying physical system. Engineers are interested in analyzing these
time series in order to characterize, forecast, and control the underly-
ing system. There are several different approaches currently being used
to model this type of time series. However, there is little agreement
in the time series literature on the appropriateness of alternative

models.

The first approach, developed by Box and Jenkins (1970), advocates
the use of a seasonal difference operator and seasonal autoregressive-
moving average parameters. These are then combined with non-seasonal
differencing and non-seasonal autoregressive-moving average parameters,
as appropriate, resulting in a multiplicative autoregressive-
integrated-moving average (ARIMA) model. This approach was used by Jen-
kins (1979) to model outdoor temperature and electrical consumption, by
Kline (1979) to model outdoor temperature and the roughness of machined

surfaces, and by DeVor and Wu (1971) to model surface roughness.

The second approach, known ag DDS ~-- developed by Pandit and Wu,
Pandit (1973), Wu (1977), and Pandit and Wu (1982) -~ advocates the use

of models of the form ARMA(n,n-1). This approach was used by Kline




(1979) to model outdoor temperature and surface roughness, by 0'Connor
and Kapoor (1982) to model electrical consumption, and by DeVries (1979)
to model tool chatter vibration in a single point turning operation.
This approach generally resulted in the identification of high order
ARMA models. For example, DeVries found an ARMA(10,9) for a chatter

vibration model, and Kline found an ARMA(8,6) was required to adequately

model temperature.

The third approach consists of modeling periodic time series with a
combined deterministic plus stochastic model. Typically, the deter-
ministic portion is modeled by a sum of relatively few sinusoids and the
stochastic portion by a relatively low order ARMA model. This approach
esgentially extends the classical curve fitting approach which assumes
that independently and identically distributed errors (white noise) are
superpositioned on deterministic functions. Anderson (1971) discusses
the problems of statistical inference both under the classical error
assumptions and when the random element satisfies a stochastic differ-
ence equation. This approach was used by Kline (1979) to model tempera-
ture and surface roughness; by Hittle (1981), Hittle and Pedersen (1981)
to model temperature; and by O'Connor and Kapoor to model electrical

consumption.

Kline studied the relative merit, based on the one-step and 2-step
ahead forecast error, of Box-Jenkins, DDS, and deterministic plus sto-
chastic models for several periodic time series. In general, ne found
that deterministic plus stochastic models provided better forecasts than

either the Box-Jenkins or DDS models. O'Connor and Kapoor found that a




deterministic plus stochastic model provided be’ter forecasts than the
models identified by DDS for electrical consumption for all forecasts
from one to 24 hours ahead. A similar result was reported by Pandit and
Wu in modeling the classical airline data originally presented by Box
and Jenkins. Box and Jenkins concluded that an ARIMA model was adequate

for forecasting the airline data.

DeVries used the DDS approach to model tool chatter in order to
characterize the vibration dynamics for control purposes. He speculates
that the relatively high order ARMA models identified by DDS may be able
to be simplified via pole-zero cancellation. DeVries further notes that
this would be particularly attractive, for simplified on-line control of

turning operations, 1f an AR(2) were found to be sufficient.

Hittle and Pedersen developed ARMA models via the DDS approach and
deterministic plus stochastic models to forecast outdoor temperature for
use in the calculation of heat conduction through multi-layered building
walls and floors. They note that this calculation is simplified if the
outside surface temperature can be treated as the sum of pure sinusoids.
Hittle and Pedersen conclude that both Fourier analysis and the DDS
modeling procedure allow identification of periodic behavior. However,
they further conclude, adequate ARMA models do not provide good esti-

mates of the amplitude of the principal sinusoidal behavior.

The confusion and ambiguity in today's time series literature
regarding the appropriateness of alternative models makes it difficult

to select a valid modeling approach. Criteria are needed for selecting




appropriate modeling approaches for this type of strongly periodic time
series. This research represents a first step towards establishing
selection criteria. A fundamental understanding of the similarities and
differences among alternative models will be gained by understanding the
manner in which alternative models account for the variance in periodic
time series. 1In particular, the objective of this thesis is to identify
mathematically the spectral equivalency, when it exists, between a
deterministic and a stochastic representation of a periodic compomnent in
a time series. Since the spectrum represents the frequency decomposi-
tion of the variance of the time geries, this provides a criterion for

selecting an appropriate model.

In order to establish this spectral equivalency, the spectrum for a
discrete deterministic time series, consisting of a sinusoid plus white
noise, is derived in Chapter 2. The spectrum for a second order
Autoregressive-second order Moving Average, ARMA(2,2), stochagtic model
is derived in Chapter 3. Equivalency between deterministic and stochas-
tic models is defined in Chapter 4 based on the frequency decomposition
of the variance of the time series. A procedure for identifying an
equivalent stochastic model for a given deterministic model is also
presented. The identification procedure is illustrated with a numerical

example in Chapter 5.




2. DETERMINISTIC SPECTRUM

Spectrum of a Sinusoid

Consider a periodic time series {xt}z_l that consists of a single

sinusoid plus white noise.

® = dt + a, (Eq. 2-1)

where

="
"

A cos (wt + wo)

and

a, is an independently and identically distributed random

2
variable with mean 0 and variance o ; i.e.,
a is iid (0 02)
t *“a
and

a, and dt are independent.

The spectral density function, or more commonly the spectrum of
{x¢}, will be denoted by f,(6) and is defined by the discrete Fourier

transform, Jenkins & Watts (1968):
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X t=1 t=1

(Eq. 2-2)

(Eq. 2-3)

Since the complex absolute value squared of a complex number is the

product of the complex number and its conjugate, Churchill (1974),

expansion yields
_ 1 iot
fx(e) =N (Z dte Zdte + Zdte

.16t -ift i6¢t
+ Zdte Zdte + Zate

-ift 16t
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(Eq. 2-4)
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But
N N -
2 deiet 2 -10k -5 T dtakeie(t k)
t=1 t k=1 tk
=3 (T dt at—l) eieg'
Lt
where L = t-k
=0 (Eq. 2-5)

Since E(dtat) - E(dt) . E'(at) = 0 which implies ):dtat =0

Similarly

i0¢ -iot
e

£d, =0 (Eq. 2-6)

a
Zte

Hence Eq. 2-4 can be written as

L

a eiet
7N

N 2 N 2
£.(8) = fﬁ ‘ ¥ dteiet| + | | (Eq. 2-7)
t=1 t=1

That is, the spectrum of the sum is the sum of the spectra when series

are independent.

The spectrum of {d¢ } can be shown (Appendix A) to be




. N 3]
A2 sin2 §£9§Q) sin §£2§9) sin —igg—l
= = +1) k2 .
f4 lmN[ 5 org  * 2 cosl(MDuran, ] — L =B
sin  —5— sin sin
2 2 2
SinZ N(w-2-6)
YT Tee (Eq. 2-8)
sin ——

Since the spectrum for a finite discrete series is only defined at

discrete points, it is understood that 6 = E%i i= 0,1,2,...,&.

The spectrum can be evaluated at 6 = w by avplying ¢'Hopital's rule

to evaluate the indeterminate factor as follows:

N(w-6)
iin N (w-6) N sin — 3
lim ° 2 - lim N(w-e
6w . (w-8) 6w 2
sin ———~
2 sin Etjz
2
w-8
2
=N (Eq. 2-9)

Therefore, from Eq. 2-8 and Eq. 2-9, we get

= A |sinNw NsinNw 2
td(m) AN [ qinzm + 2 cos| (N+1)w + Z(un] ~ino + N ] (Eq. 2-10)




If N is chosen such that it is an integer multiple of the periodicity,

27k

i.e., if w = _%- where k is a non-zero integer, then sin Nw = 0 and

Eq. 2-10 reduces to

3 2
For 6 # w i.e. 8 -2g1-, w = —%5

sin N(ﬁ;e) = sin(k+j)m = 0O
and
sin Ei%fgl = gin(k-j)7 = 0

Therefore, in this case Eq. 2-8 reduces to

fd(e) =0 8w

N

Spectrum of White Noise

The spectrum of {ag]} can be shown (Appendix B) to be

and j # k

(Eq. 2-11)

(Eq. 2-12)

(Eq. 2-13)

(Eq. 2-14)
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%
fa(e) = (Eq. 2-15)
Spectrum of a Deterministic Model
Thus the spectrum of {x.}, denoted by fy(68), where
- 2Tk { (Eq. 2-16)
x = A cos( v ¢ + wo) + a 1is q
2 02
rA -l —3 .=k
Tt J
2 J Eq. 2-17)
e (& - (Eq
x N
2
o
_a j ¥k
|
N
forj=0,1,---,'§

This spectrum is shown graphically in Figure 2-1.

The spectrum represents the frequency decomposition of the variance
of {x¢}. This can be seen by integrating the gpectrum via the rectangu-

lar rule to show that the area is equal to the variance of {x.}.

——— e
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Figure 2-1. Spectrum of A cos(wt + wy) + ag

m

A




2
2 o]
_A N 2m a_2m N
Var(x)) =5 "y ¥ *t 7 ~ 2
_A2 2
2 T 9, (Eq. 2-18)

That is, the variance of x; is the sum of the variance of d¢ and a
since d¢ and at are independent.

2

[0}
Note that Eq. 2-17 can be normalized by dividing by -ui (1£f

2
O #0.)
2
Ao..ri._.'.l ]=k
2 202
n 21j
— .G 2 (Eq. 2-19)
G2 X
a 1 j#k

for 3 =0,1, . . .,

N2

In summary, we have shown in this chapter that the spectrum for a
sinusoid plus white noise is equal to the sum of the gpectrum for a
sinusoid and the spectrum for white noise. The spectrum for a discrete
sinusoid plus white noise will be used in Chapter 4 to establish

equivalency between deterministic and stochastic models.
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3. STOCHASTIC SPECTRUM

Stochastic Model

We now consider stochastic models of the form

9(B)
@) % = V®a, (Eq. 3-1)

Ye T

<

where 6(B) and ¢(B) represent polynomials in B, the back shift operator,
which is defined such that Bx, = x¢_1, and a; 1is an idd (0,0i) random

variable. Specifically, we will consider ARMA(2,2) models since two
degrees of freedom are required to allow the roots of the polynomial

equations associated with g(B) and ¢(B) to be complex.

This model is written mathematically as

2
. (1-91B-92B {

y = —— - a (Eq. 3-2)
O (1-¢.B-¢ 8% °
=6, 8-%,
which means
= a - 8a o - , Eq. 3-3
Ve = 0 Weor T OV e T M T B3 (Eq )
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Spectrum of a Stochastic Model

The spectrum, denoted by fy(e), of the output, y4, of a linear
filter, Y (B), is related to the spectrum, f,(g), of the input, a., as
follows, Anderson (1971):

2
|

-i6
£,(0) = [ute "H[" £_(8) (Eq. 3-4)

2
g
Since the input, a,, is white noise, f4(6) = fsu Thus,

i6

fy(e) = 7% l e ) (Eq. 3-5)

That is, the spectrum of {y.} is equal to the variance of a,

divided by 7 times the complex absolute value squared of the transfer

function ¢(B) evaluated at B = e 16,

Now,

)

o~

B)

w(B) (B)

}'

<

(1-8,8-6,8%)
=5 (Eq. 3-6
(1-6,B-6,8) o 0

can be written as

_ (1-VB) (1-VB)
V(B) = (13B)(1-78) (Eq. 3-7)
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where it is assumed that the roots of the associated polynomial equa-
tions of 6(B) and ¢(B) are the complex conjugates v, v and ), A, respec-
tively. The complex numbers v and v will be called the zeros, and ) and

"\ will be called the poles of the ARMA(2,2) model. The zeros and poles
are assumed to be complex conjugate pairs in order to allow them to be

near el®, which will be shown in Chapter 4 to be necessary for spectral

equivalence.

Therefore,

.2
2 Jj}—ve-igl(l—cé-le)[
 la-re") a-7e19 2

e-ie -(Eq. 3-8)

lw( )|

If we multiply each factor in the numerator and denominator of

Eq. 3-8 by el28 ye get

10 _ Ly (el - 5y|2

A (Eq. 3-9)

| e

)| o=
e

- A)(eie - X-)|

which can be rewritten, Churchill (1974), as

2 2
-18,,2 |eie-v| |eie - vl
[w(e )I = [}eie-A,] ¢ [ ei _ XW (Eq. 3-10)




16

Figure 3-1 graphically illustrates Eq. 3-10 in the complex plane. Since
|e19-v| is the distance between el® and v, and leie-A| is the distance

between ei® and A, the first term is equal to the ratio of these two
lengths squared. Similarly, |ei8-T| and |el€-) | represent the distance

between el® and |, and )\, respectively. Hence the second term is equal

to the ratio of these two lengths squared.

If we define v and V such that in polar form

v = gel® , V= se 1 (Eq. 3-11)
and A and X such that
A= reip s, A= r:e-ip (Eq. 3-12)

then lw(e—ie)|2, Eq. 3-8, can also be represented conveniently as

2
-18)12 L (1-se”16-9)) (1 g1 (849D,
| (1-re~2(O=P)y (1pe 1 (04P)y 2

[w(e

- (1-2s cos(6-0)+s?l . (1-2s cos(§+o)+s?l
(1-2r cos(6—p)+r2) (1-2r cos(649)+r2)

(Eq. 3-i3)

The two factors in Eq. 3-10 and Eq. 3-13 can be seen to be equal by

considering leie-vl as shown in Figure 3-2. Application of the Cosine

formula for two sides and the included angle yields immediately:
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Figure 3-1.

Graphical Interpretation of |¥ (e~19)|2

1 REAL
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Figure 3-2. Trigonometric Development of |el®-v|

s el
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-V| =1+ 32 - 2s cos(6-0) (Eq. 3-14)

Similar application of the Cosine formula to the three other dis-

tances completes the demonstration.

In this chapter we have defined the spectrum and developed a graph-
ical interpretation of the poles and zeros for a stochastic model. This
interpretation will be used in Chapter 4 to identify equivalent deter-~

ministic and stochastic models.
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4. EQUIVALENT DETERMINISTIC AND STOCHASTIC MODELS

Definition of Equivalence

Equivalence between the deterministic and stochastic models will be

established via their spectral representations. The spectrum of the
stochastic model will be equated to the spectrum of the deterministic
model in the sense that they both represent the same frequency decompo-
sition of variance. Since the area under the spectrum represents vari-
ance, equivalence is established by equating the area under each spec-

trum.

The area under the deterministic spectrum is found via the rec-
tangular rule for integration. This 1is due to the nature of the
discrete Fourier transform that was used to derive the deterministic
spectrum. Brigham (1974) presents a nice graphical development of the
discrete Fourier transform for sampled data. The rectangular area

around any specific discrete frequency, say o*, represents the variance

of X, that is contained in the frequency interval 6* — I to g% + %.
That is,
27 X
Var(x )| = =— £ (8%) (Eq. 4-1)
t e*r% N "x

It is important to note, according to sampling theory, Kuo (1977), that

a discrete time series can only contain information about the total

variance in each of the g.frequency intervals of length %}. Thus the
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spectrum of the discrete deterministic model represents the total vari-
ance in each interval but contains no information on how the variance {is

distributed within each frequency interval.

The spectrum for a stochastic model, however, is continuous.
Therefore, the value of the spectrum, fy(e*), at the frequency 6%
represents the variance of Ye at 0%, The total variance in any interval
is found by integrating fy(e) over the interval. Thus,

T

N

- J £ (8)dd (Eq. 4-2)
X y

Var(Vt)Ie* + T
N

I
- N

In order to directly compare the spectral representation of a sto-

chastic model to the discrete spectrum of a deterministic model, we will
*

define the equivalent discrete stochastic spectrum, denoted by fy(e), as

follows:

. 8 +
£400) = J

6 -

fv(e)de (Eq. 4-3)

Zis 2|2

where it is understood that € = Zﬂl j-O,l,Z,...,;.

In summary, the deterministic and stochastic models are equivalent

when the frequency decomposition of the variance is the same for both

*
models. That is, when %} fx(0) = fy(e) 0= 351 j=0,1,2..., ;.
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Care must be taken for non-normal processes since the uniqueness
implied above is only guaranteed for second order stationary normal

processes, Jenkins and Watts (1968) and Chattfield (1975).

Procedure for Identifying Equivalent Models

Model equivalence requires interval by interval equality for each
of the g-intervals; therefore, model equivalence also implies equality

of the total variance over the entire frequency range from O to n. The
equality of the total variance is8 a necessary, but not sufficient, con-
dition for model equivalence. However, it can be used as a gross check

on model equivalency.

Two concepts will now be introduced to provide a practical pro-
cedure for identifying an equivalent stochastic model for a given deter-

ministic model.

The first concept relies on the geometric interpretation of the
stochastic spectrum introduced in Chapter 3 and the normalized deter-

ministic spectrum from Chapter 2.

A pair of complex conjugate poles (A, A) and zeros (v, v) are shown
in the unit circle on the complex plane in Figure 4-1. A graphical
interpretation of fy(e) which was demonstrated in Chapter 3 (Eq. 3-5 and

3-10) to be a function of

| ——
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Figure 4-1. Graphical Interpretation of lw(e"ie*)|2 and |\u(e'1“’)| 2




ey 2. [l o] [l 51
16 16 =
Ie ')\I le )\l

is shown for 6 = 6% and 6 = w.

(Eq. 4-4)

It can be seen if A and Vv are close to the boundary of the unit

circle, and near elv, with v farther from el® than A 1s from eim, that
when g = g%

PSR R P (Eq. 4-5)
and
[ IR Y (Eq. 4-6)
hence, from Eqs. 4-4, 4-5, and 4-6
0@ty 2= 12 12 5 (Eq. 4-7)
When 8 = w
B (Eq. 4-8)
and
lel¥ = 5] = |et¥ - X (Eq. 4-9)
hence, from Eqs. 4-4, 4-8, and 4-9
lve 14y |2 = lfii-l-ﬁl :. 12 = _fif_:_ﬁl 2 (Eq. 4-10)
|eiw _ Al Ieiw _ Al
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Thus, under these assumptions, the stochastic spectrum

2 2
“ %a | (et 4-11
= — Iy . -
fy(G) p vie 77) (Eq )
2
is approximately equal to —:- for 0 4 w and approximately equal to
2 i2
g i6_
_: J.E.—_.._Y.'— for 6 = w.
T leto-»|2

The most critical case in the above approximation occurs when 0* is

near y. We want Iei“’ -vl much larger than |e1“’ —A| and, simultaneously,

|e19* -vl approximately equal to |e19* -Aj|. This means that |e1“’ —vl

must be much smaller than |el6* - el¥| for 6% near w. Since

£ (o - 2T Im_% £.(8)do (Eq. 4-12)
y YN g 37 q'
N
and
3q
W+ -
£ (w+ 20 - N £ (p)do (Eq. 4-13)
y N w+ X
N

the most critical value for 6% is when 6* = w+ % Hence, we want

ei(mtﬂ/N) - eiml = 2 sin o

|el® N (Eq. 4-14)

-\)l<<|




26

The spectrum of a deterministic sinusoid plus white noise, i.e.,

x = A cos(wt + w) + a, (Eq. 4-15)

where

. 2
a, is iid(O,oa)

a, and dt are independent

was shown in Chapter 2, Eq. 2-17, to be

. 2
2 o
A N a =
7 "wm T o=uw
£ (6) = 9 (Eq. 4-16)
X
2
0]
Y 8 # w
LTT

Figure 4-1 has shown that for suitably chosen A and v that

f ~
Y(e) (Eq. 4-17)

02
A
[ m 8+ uw

Thus the two spectra represent the same general decomposition of vari-

ance.
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The second concept for identifying the specific form of the sto-
chastic spectrum takes advantage of the general form of fy(e) and the

equality of total variance over the entire spectra.

If the total area under each spectrum is equal and the spectra are
equal everywhere except for 6 = w, then the area in the interval around

w must be equal. That is, 1if

2 g 0'2
AN . [2m 2
{ T ?a] {—ﬁ—] e [‘ﬁ’l] 5-1)- f fy(0) do (Eq. 4-18)
0

2
A 2 _
FIR f £,(6) d6 (Eq. 4-19)
0
and
fx(e) = fy(e) 04w (Eq. 4-20)
then
= I
K: 202 B=u+y
5 + N = I fy(e) de (Eq. 4-21)
f=w- 1%
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The identification procedure, therefore, consists of, 1) choosing A

and v such that fy(e) has the general form of Eq. 4-17 with

n - A 2 * 2n 27}
Jofy(e)de 7{.+ o, and, 2) comparing fy (9) to N fx(e) for 8 = N

N
3=0,1,2,000, o

Before discussing specific procedures for finding A and v a method
m
for evaluating theJ fy(e)de utilizing Green's function will be
0

presented. This will eliminate the need to do some integrations in the

identification procedure.

Green's function, also called y-weights by Box-Jenkins (1970),

represents an orthogonal decomposition of a time series by expressing

the time series as a linear combination of independent random variables. ‘
That is, for
8(B) - -22 \
e T o) %t v(B)a, (Eq. 4-22)

v = iin Gy (Eq. 4-23) a
Since the a.'s are mutually independent, identically distributed #
random variables, Eq. 4-23 implies, Hogg & Craig (1978): F
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y a j=0 3 (Eq. 4-24)

wvhere ci is the total variance of the output of the linear process,

¢(B), when driven by white noise of variance o:. In other wvords,

(Eq. 4-25)

It can be shown, Appendix C, for an ARMA(2,2) model with complex

poles and zeros, that

; G? -1+ R2r2 [fos(Z(p-B)) - r2 cos 28 + 1 ] (Eq. 4-26)

4
j=0 J 2 1+ r - 2r2 cos 2p l-r2

where r = ||

o = Arg (})
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The spectral equivalence of deterministic and stochastic models has
been developed in this chapter. A procedure to identify an equivalent
stochastic model for a given deterministic model also has been
presented. This procedure utilizes the graphical interpretation of the
stochastic spectrum presented in Chapter 3 and the analytic expression

for Z G§ derived in Appendix C. The identification procedure will be
i=0

illustrated in the next chapter.
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5. EXAMPLE OF THE IDENTIFICATION OF EQUIVALENT MODELS

General Discussion

The following example illustrates the specifics of the procedure

for identifying an equivalent stochastic model for a given deterministic
model. The deterministic model is "given" in the sense that Fourier
analysis of {x;} has been used to identify the deterministic model. The
converse problem -- given a stochastic model: find the equivalent
deterministic model -- is sclved by a straightforward (actually simpler)

application of the principles illustrated in this example.

Given
X = dt + a, t=1,2, . .., N (Eq. 5-1)
where
dt = A cos{wt + wo)
a is an iid (0,0;) random variable
and
dt and a, are independent
Find
(1-6_8-6.8%)
- 1 2
Ye = T /5~ a (Eq. 5-2)

(1-6,8-9,8°)

such that {xt}, {yt} have the same second order properties
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While the choice of A and v is restricted to be near el®” and inside
the unit circle, this still leaves an infinity from which to choose.
However, the "best” placement for both A and v is such that their argu-

ments are both equal to w.

Define X and v such that in polar form

)\ = r eip (Eq. 5-3)

v =g el (Eq. 5-4)
and let

Pp=0=uwWw (Eq. 5—5)

This placement is "best”™ in the sense that the spectrum evaluated
at the discrete frequency before and after w will be approximately

equal. That is,

27, 2
f;(w -5 f;(w +) (Eq. 5-6)

This means that both of these values can simultaneously be made arbi-

2
20

trarily close to _8. Recsg.l, Eq. 4-17, that
N

2

iw
[ e -V ] (Eq. 5-7)
l eiw_x l

ﬂlmQN

fy(w)=
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Thus, fy(w) is dominated by the ratio of the distance between ei® and v
and the distance between el® and \. This is also true for the spectrum
near w. Hence,

20

* 2My x g% 2my =z Eq. 5-8)
f(m-—N—) fy(m+N) - (Eq

|3 ]

requires that

lei(wiK/N)_ vl (Eq. 5-9)

=1

lei(wtwlu)_ X|

This condition will be satisfied when

iw -l << Iei(wi"/N)_eiw

- v| and | | = 2 sin

T
le 2N (Eq. 5-10)

The above condition is satisfied when both A and V are much closer

to el® than to el(w * 7/N), when p = 0 = w, both A and v are equally
far from el(® = T/N) zp4 oi(w + “/N). respectively, and the ratio of the

distances can be made arbitrarily close to one. This idea is {llus~

trated in Pigure 5-1. The distance between elw and el(w * 7/N) hag been
greatly exaggerated to illustrate the concept of relative

"nearness” /"farness.” As can be seen in Figure 5-1,




ilw+ —b’Tr) -v'

TP
el(u+ N )
|ei(w+ —;—lr-,__x
eiw
A
v
ei(m--l%-)
1

REAL

Figure 5-1.

Graphical Interpretation of |y(e~1(wtm/N)y|2
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Jei(wi""/N) -\)|

~

1 (Eq. 5-11)
|ei(wt1r/N) -AI

even though

iw
.Ii_;_‘).l._l-s>>l

i h Eq. 5-
'ew‘A! 1_r (q 512)

Thus, placement of X\ and v on the same radian as w withr > s
results in a stochastic spectrum of the same general form as the deter-

ministic spectrum.

To find specific values for ) and v, given p = 0 = w, we will

assign r arbitrarily close to one and calculate the corresponding value

of 8 such that

n 2

A 2
=2 4 Eq. 5-13)
J £,(9) 46 = 5 + o (
0
via
5 G (Eq. 5-14)
£y 3
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Numerical Example

The identification procedure will now be illustrated with a numeri-
cal example. Assume that Fourier analysis has been used to identify the
following sinusoidal plus white noise model; this example is adapted

from 0'Connor and Kapoor (1982).

Given:

A = 8.643
w=2
24
o’ = 8.460 (Eq. 5-15)
W ?-{#0
The deterministic spectrum is
(2 o
A N a _ _ 27
5 > + = = 1,429.4 6 = %
f (0) = -
o
a 27
p = 2.693 6 * 5

NN
&1
o
[N
i
o
-
p—
-

for 6 =

and 02 = é~-+ 02 = 45,811
X 2 a

Therefore the frequency decomposition of the variance of x., obtained by

integrating f,(6) via the rectangular rule, 1isg
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’ A2 Zoi
—2—- + —N 337.421 0 w
2n - . 5-17
Var(xt)l . N fx(e) . 9 (Eq )
Btﬁ 20
2 = .0705 8% w
(| N
g 2
Let A= .999 e 24 (Eq. 5-18)
2n
and calculate Vv = s e~ 24 such that
o> fcz-iz-+oz—4 (Eq. 5-19)
a i 772 a 5.811 q.
j=0
l.e.
oo A2 1
16, =5+ = +1=5.415 (Eq. 5-20)
NP | 2 2
j=0 (o4
a
An iterative solution of Eq. 4-26 gives s = .9308 when 320G§ = 5.415.

Thus
2n g 21
A= 0.999 el 3% Vv = 0.9308 e 74
and therefore
¢1-A+'X-1.9299 61=v+3-1.7982
¢, = -\ = -0.9980 0, = -W = ~0.8664

o2 =o? J ¢ =ussn
y a 4=0 3

(Eq. 5-21)

(Eq. 5-22)

itk hisitihens
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Comparing

leiw - v|=1 - & = .069 (Eq. 5-23)

to

|ei(w + 1/N) —elw| = 2 sin é%-= .013 (Eq. 5-24)

shows that V is not much closer to el® than the distance between el® and

ei(w + 7/N), The effect of this can be seen in Table 1, which shows a

o+ 1

portion of fy(e) and the J N fy (0)de. The variance of Ye around
p - X
N

*
“’fy (w), is 36.661 vs %;.fx (w) = 37.421. Also the variance of Ye in
the intervals on either side of w is large compared to the desired

31 fx (w + 27/N) = .0705 while the variance at high frequencies is low.
N =

The deterministic model has a total variance, oi = 45,811, distributed

such that the variance of x, at w is 37.421 and the remaining variance
of 8.390 is distributed evenly at the remaining frequencies. This sto-
chastic model results in a total variance, 03 = 45.811, but the variance
of y¢ at w is 36.661, which is 80.0% of the total variance versus the
desired 81.7%. Also the variance of y, at w t_%;.is about .68, or

almost 10 times the desired variance. Therefore, this stochastic model

is not exactly equivalent to the given deterministic model.

We can improve the approximation by moving both A and v closer to

2 2r
the unit circle. When X = ,99999 ¢ 24, wve find v = .9933 e 24. Hence
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Table 5-1. Stochastic Spectrum: r=.999, &=.9308
- 2nj I
J ] N fy(e)' fy(e)de
0 0.000 2,704 .0354
1 .026 2.715 L0711
2 .052 2.750 .0720
3 .079 2.818 .0738
] . 105 2.935 .0769
5 AN 3. 143 .0825
6 157 3.537 .0931
7 .183 4,400 . 1167
8 .209 6.880 . 1879
9 .236 20.271 .6857
10 .262 12240,423 36.6606
1 .288 20.197 .6836
12 .314 6.829 . 1866
13 .340 4,350 ‘ 1154
14 .367 3.481 .0916
15 .393 3.078 .0808
16 U419 2,859 0749
17 LU4s5 2.726 0714
18 AT 2.639 .0691
19 497 2.579 .0675
20 524 2.536 .0664
21 «550 2,504 .0656
22 .576 2.480 .0649
23 .602 2.461 L0o6u4
24 .628 2,445 .0640
25 .654 2.433 .0637
26 .681 2,422 .0634
27 .T07 2.414 . 0632
28 .733 2,406 40630
29 .759 2.400 .0628
30 .785 2,395 .0627
[} . U] 4
N ’ : :
119 3.115 2,344 0614
120 3.142 2.3u4 .0307
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01 = 1.93183
42 = -0.99998
61 = 1.91895 (Eq. 5-25)

62 = -0.98669

N

o. = 45.811

In this case v is close to elw, .007, compared to the distance

between elw and ei(w *+ T/N) ,013. Table 2 also shows that the distri-
bution of the variance of Ve is very close to the desired variance dis-
tribution of X, . The variance of Y, at w, 37.515, is 81.9%Z of the total
variance versus the desired variance of 37.421 or 81.7%, and the

remainder of the variance is quite evenly distributed.

A stochastic model which represents the same frequency decomposi-
tion of variance, to any arbitrary approximation, can be found for any
real valued sinusoid plus white noise. The required degree of approxi-

mation depends on the application.

The identification of an equivalent, or approximately equivalent,
deterministic model for a given stochastic model relies on the same
principles illustrated in the above example. The "goodness" of the
approximation is evaluated by considering the frequency decomposition of

variance.

For example, suppose we have identified as the best stochastic
model for a given time series the ARMA(2,2) whose spectrum 1is shown in

Table 1. The concentration of the variance of e in the interval




Table 5-2. Stochastic Spectrum:
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r=.99999, s=.9933

_ _2mj f d
j g = —ﬁl fy(e) ny(e) 8
0 0.000 2.661 .0348
1 .026 2.661 0697
2 .052 2.661 0697
3 .079 2.662 .0697
4 .105 2.663 0697
5 <131 2.665 .0698
6 157 2.669 .0699
7 .183 2.677 .0701
8 .209 2,701 .0708
9 .236 2.832 .0757
10 .262  1192486.736 37.5145
" .288 2.832 .0756
12 314 2.701 .0708
13 .340 2.677 .0701
14 .367 2.668 .0699
15 .393 2.664 .0698
16 419 2,662 .0697
17 s 2.661 .0697
18 471 2.660 .0696
19 497 2.659 .0696
20 .524 2.659 .0696
21 .550 2.659 .0696
22 .576 2.659 .0696
23 .602 2.658 .0696
24 .628 2.658 .0696
25 .654 2.658 0696
26 .681 2.658 .0696
27 707 2.658 .0696
28 .733 2.658 .0696
29 759 2.658 0696
30 .785 2.658 .0636
: . . ’
g hd . :
119 3.115 2.657 .0696
120 3.142 2.657 .0348
assidesestittolloteisnat ittt bR SRty ihiitetnieinntiSinte nit i eekih
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Zﬂ.- L . EI.+._1_) suggests the presence of a sinusoid whose period
24 240 24 240

is 24. A hypothesis test of the "goodness”™ of modeling this time series
as a sinusoid plus white noise can be based on the difference in the sum
of the squared errors explained by the stochastic and deterministic
models and the degree to which the residual series of the deterministic

model departs from the white noise assumption.

This type of analysis provides the basis for determining the signi-
ficance of pole-zero pairs. The significance of cancelling nearly equal
poles and zeros or modeling their effect with a sinusoid can be deter-

mined through an analysis of variance.

This chapter has illustrated numerically the procedure for identi-
fying equivalent deterministic and stochastic models for time series
with a periodic component. We have shown that the significance of
departures from exact equivalence for approximately equivalent deter-
ministic and stochastic models can be evaluated by comparing the fre-

quency decomposition of variance implied by each model.
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6. SUMMARY AND CONCLUSIONS

Summarz

The concept of equivalency between a second order stationary sto-

chastic and deterministic representation of a periodic component in a
time series was developed in Chapter 4. A deterministic and stochastic

model are equivalent when they represent the same frequency decomposi-
tion of variance. Equivalence of the spectral representations requires

integration of the continuous form of the stochastic spectrum over each

of the ; intervals of length %g.to make the stochastic spectrum directly

comparable to the discrete spectrum of the deterministic representation.

A procedure for finding an equivalent stochastic representation for

a given deterministic representation that uses the graphical interpreta-

tion of the stochastic spectrum and the analytic expression for ZGZ to

3=0

calculate the integral of the stochastic spectrum was also developed in
Chapter 4 and i1llustrated in Chapter 5. This procedure consists of: 1)
choosing the poles and zeros of the stochastic model such that the spec-
trum has a peak at the same frequency as the deterministic sinusoid and
such that the total variance of the output of the stochastic process is
equal to the total variance of the sinusoid plus white noise determinis-
tic model; and 2) comparing the frequency decomposition of the variance
of the stochastic model to that of the deterministic model for each

discrete frequency interval.
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Important implications of these results are as follows. The iden-
tification of mathematical equivalence, when it exists, allows the time
series analyst to choose between potentially equivalent deterministic
and stochastic representations. Both representations reflect the same
information contained in the available realization of {xt} and are
mathematically equivalent second order stationary models. Hence, there
are no grounds, based on {xt}, to argue for one representation versus
its equivalent alternative. The choice must be based on considerations
of the process itself (e.g., physical arguments) or on other information
beyond that contained in {xt}. This result provides a basis for identi-
fying the similarities and differences among alternative time series

models.

The concept of equivalence can also be used to evaluate models
vhose spectral representations, while not exactly equivalent, are
approximately equivalent. Although any real valued sinusoid can be
represented by an equivalent stochastic model, not all stochastic
processes can be represented exactly by a single real valued sinusoid.
The significance of the departure from exact equivalence can be
evaluated by comparing the frequency decomposition of variance implied

by each model.

These two concepts provide a way to identify deterministic
sinusoids by using stochastic modeling techniques. This may prove par-
ticularly useful for time series which unexp